Glowing Elements in the Soul Nebula

Stars are forming in the Soul of the Queen of Aethopia. More specifically, a large star forming region called the Soul Nebula (IC 1898) can be found in the direction of the constellation Cassiopeia, who Greek mythology credits as the vain wife of a King who long ago ruled lands surrounding the upper Nile river. The Soul Nebula houses several open clusters of stars, a large radio source known as W5, and huge evacuated bubbles formed by the winds of young massive stars. Located about 6,500 light years away, the Soul Nebula spans about 100 light years and is usually imaged next to its celestial neighbor the Heart Nebula (IC 1805). The featured image is a composite of three exposures in different colors: red as emitted by hydrogen gas, yellow as emitted by sulfur, and blue as emitted by oxygen. via NASA https://ift.tt/2nTX22k

Planet of Clouds

Our cloud-covered planet is seen from aboard the International Space Station. via NASA https://ift.tt/2PpHhwU

Active Prominences on a Quiet Sun

Why is the Sun so quiet? As the Sun enters into a period of time known as a Solar Minimum, it is, as expected, showing fewer sunspots and active regions than usual. The quietness is somewhat unsettling, though, as so far this year, most days show no sunspots at all. In contrast, from 2011 – 2015, during Solar Maximum, the Sun displayed spots just about every day. Maxima and minima occur on an 11-year cycle, with the last Solar Minimum being the most quiet in a century. Will this current Solar Minimum go even deeper? Even though the Sun’s activity affects the Earth and its surroundings, no one knows for sure what the Sun will do next, and the physics behind the processes remain an active topic of research. The featured image was taken three weeks ago and shows that our Sun is busy even on a quiet day. Prominences of hot plasma, some larger than the Earth, dance continually and are most easily visible over the edge. via NASA https://ift.tt/2wgX1cN

Asperitas Clouds Over New Zealand

What kind of clouds are these? Although their cause is presently unknown, such unusual atmospheric structures, as menacing as they might seem, do not appear to be harbingers of meteorological doom. Formally recognized as a distinct cloud type only last year, Asperitas clouds can be stunning in appearance, unusual in occurrence, and are relatively unstudied. Whereas most low cloud decks are flat bottomed, asperitas clouds appear to have significant vertical structure underneath. Speculation therefore holds that asperitas clouds might be related to lenticular clouds that form near mountains, or mammatus clouds associated with thunderstorms, or perhaps a foehn wind — a type of dry downward wind that flows off mountains. Such a wind called the Canterbury arch streams toward the east coast of New Zealand’s South Island. The featured image, taken above Hanmer Springs in Canterbury, New Zealand, in 2005, shows great detail partly because sunlight illuminates the undulating clouds from the side. via NASA https://ift.tt/2OMJ8ui

NASA to Host Media Briefing on New Ice-Monitoring Mission

NASA will host a media teleconference at 1 p.m. EDT Wednesday, Aug. 22, to discuss the upcoming launch of the Ice, Cloud and land Elevation Satellite (ICESat-2), which will fly NASA’s most advanced laser altimeter to measure Earth’s changing ice.

from NASA https://ift.tt/2MW7H7R
via IFTTT

Sun’s Magnetic Field Portrayed

NASA’s Solar Dynamics Observatory (SDO) scientists used their computer models to generate a view of the Sun’s magnetic field on August 10, 2018. The bright active region right at the central area of the Sun clearly shows a concentration of field lines, as well as the small active region at the Sun’s right edge. via NASA https://ift.tt/2wbmxQz