Pleiades over Half Dome

Stars come in bunches. The most famous bunch of stars on the sky is the Pleiades, a bright cluster that can be easily seen with the unaided eye. The Pleiades lies only about 450 light years away, formed about 100 million years ago, and will likely last about another 250 million years. Our Sun was likely born in a star cluster, but now, being about 4.5 billion years old, its stellar birth companions have long since dispersed. The Pleiades star cluster is pictured over Half Dome, a famous rock structure in Yosemite National Park in California, USA. The featured image is a composite of 28 foreground exposures and 174 images of the stellar background, all taken from the same location and by the same camera on the same night in October 2019. After calculating the timing of a future juxtaposition of the Pleiades and Half Dome, the astrophotrographer was unexpectedly rewarded by an electrical blackout, making the background sky unusually dark. via NASA https://ift.tt/SY1Eih0

Stephans Quintet from Webb, Hubble, and Subaru

OK, but why can’t you combine images from Webb and Hubble? You can, and today’s featured image shows one impressive result. Although the recently launched James Webb Space Telescope (Webb) has a larger mirror than Hubble, it specializes in infrared light and can’t see blue — only up to about orange. Conversely, the Hubble Space Telescope (Hubble) has a smaller mirror than Webb and can’t see as far into the infrared as Webb, but can image not only blue light but even ultraviolet. Therefore, Webb and Hubble data can be combined to create images across a wider variety of colors. The featured image of four galaxies from Stephan’s Quintet shows Webb images as red and also includes images taken by Japan’s ground-based Subaru telescope in Hawaii. Because image data for Webb, Hubble, and Subaru are made freely available, anyone around the world can process it themselves, and even create intriguing and scientifically useful multi-observatory montages. via NASA https://ift.tt/FKbiZMm

Europa and Jupiter from Voyager 1

What are those spots on Jupiter? Largest and furthest, just right of center, is the Great Red Spot — a huge storm system that has been raging on Jupiter possibly since Giovanni Cassini’s likely notation of it 357 years ago. It is not yet known why this Great Spot is red. The spot toward the lower left is one of Jupiter’s largest moons: Europa. Images from Voyager in 1979 bolster the modern hypothesis that Europa has an underground ocean and is therefore a good place to look for extraterrestrial life. But what about the dark spot on the upper right? That is a shadow of another of Jupiter’s large moons: Io. Voyager 1 discovered Io to be so volcanic that no impact craters could be found. Sixteen frames from Voyager 1’s flyby of Jupiter in 1979 were recently reprocessed and merged to create the featured image. Forty-five years ago this August, Voyager 1 launched from Earth and started one of the greatest explorations of the Solar System ever. via NASA https://ift.tt/IS2gqky

Tycho and Clavius at Dawn

South is up in this dramatic telescopic view of the lunar terminator and the Moon’s rugged southern highlands. The lunar landscape was captured on July 7 with the moon at its first quarter phase. The Sun shines at a low angle from the right as dawn comes to the region’s young and old craters Tycho and Clavius. About 100 million years young, Tycho is the sharp-walled 85 kilometer diameter crater below and left of center. Its 2 kilometer tall central peak and far crater wall reflect bright sunlight, Its smooth floor lies in dark shadow. Debris ejected during the impact that created Tycho make it the stand out lunar crater when the Moon is near full though. They produce a highly visible radiating system of light streaks or rays that extend across much of the lunar near side. In fact, some of the material collected at the Apollo 17 landing site, about 2,000 kilometers away, likely originated from the Tycho impact. One of the oldest and largest craters on the Moon’s near side, 225 kilometer diameter Clavius is due south (above) of Tycho. Clavius crater’s own ray system resulting from its original impact event would have faded long ago. The old crater’s worn walls and smooth floor are now overlayed by newer smaller craters from impacts that occurred after Clavius was formed. Reaching above the older crater, tops of the newer crater walls reflect this dawn’s early light to create narrow shining arcs within a shadowed Clavius. via NASA https://ift.tt/BZFlney

Lubovna Full Moon

On July 13 this well-planned telephoto view recorded a Full Moon rising over Lubovna Castle in eastern Slovania. The photographer was about 3 kilometers from the castle walls and about 357,000 kilometers from this Full Moon near perigee, the closest point in its elliptical orbit. Known to some as supermoons, full moons near perigee are a little brighter and larger in planet Earth’s sky when compared to full moons that occur near the average lunar distance of around 384,000 kilometers. Of course any Full Moon near the horizon can show the effects of refraction over a long sight-line through dense clear atmosphere. In this image, atmospheric refraction creates the slight green flash framed by thin clouds near the top, with a ragged red rim along the bottom edge of July’s perigee Full Moon. via NASA https://ift.tt/3POinL5